Flo AI is a Python framework for building structured AI agents with support for multiple LLM providers, tool integration, and YAML-based configuration. Create production-ready AI agents with minimal code and maximum flexibility.
Checkout the docs Β»
Github
β’
Website
β’
Roadmap
Build production-ready AI agents with structured outputs, tool integration, and multi-LLM support
Flo AI is a Python framework that makes building production-ready AI agents and teams as easy as writing YAML. Think βKubernetes for AI Agentsβ - compose complex AI architectures using pre-built components while maintaining the flexibility to create your own.
Create AI workflows visually with our powerful React-based studio!
Flo AI Studio is a modern, intuitive visual editor that allows you to design complex multi-agent workflows through a drag-and-drop interface. Build sophisticated AI systems without writing code, then export them as production-ready YAML configurations.
cd studio
pnpm install
pnpm dev
# Export YAML from the studio, then run with Flo AI
python -c "
from flo_ai.arium import AriumBuilder
builder = AriumBuilder.from_yaml(yaml_file='your_workflow.yaml')
result = await builder.build_and_run(['Your input here'])
"
pip install flo-ai
# or using poetry
poetry add flo-ai
import asyncio
from typing import Any
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
async def main() -> None:
# Create a simple conversational agent
agent: Agent = (
AgentBuilder()
.with_name('Math Tutor')
.with_prompt('You are a helpful math tutor.')
.with_llm(OpenAI(model='gpt-4o-mini'))
.build()
)
response: Any = await agent.run('What is the formula for the area of a circle?')
print(f'Response: {response}')
asyncio.run(main())
import asyncio
from typing import Any, Dict, List, Union
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.tool.base_tool import Tool
from flo_ai.models.base_agent import ReasoningPattern
from flo_ai.models.agent import Agent
from flo_ai.llm import Anthropic
async def calculate(operation: str, x: float, y: float) -> float:
if operation == 'add':
return x + y
elif operation == 'multiply':
return x * y
raise ValueError(f'Unknown operation: {operation}')
# Define a calculator tool
calculator_tool: Tool = Tool(
name='calculate',
description='Perform basic calculations',
function=calculate,
parameters={
'operation': {
'type': 'string',
'description': 'The operation to perform (add or multiply)',
},
'x': {'type': 'number', 'description': 'First number'},
'y': {'type': 'number', 'description': 'Second number'},
},
)
# Create a tool-using agent with Claude
agent: Agent = (
AgentBuilder()
.with_name('Calculator Assistant')
.with_prompt('You are a math assistant that can perform calculations.')
.with_llm(Anthropic(model='claude-3-5-sonnet-20240620'))
.with_tools([calculator_tool])
.with_reasoning(ReasoningPattern.REACT)
.with_retries(2)
.build()
)
response: Any = await agent.run('Calculate 5 plus 3')
print(f'Response: {response}')
import asyncio
from typing import Any, Dict
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
# Define output schema for structured responses
math_schema: Dict[str, Any] = {
'type': 'object',
'properties': {
'solution': {'type': 'string', 'description': 'The step-by-step solution'},
'answer': {'type': 'string', 'description': 'The final answer'},
},
'required': ['solution', 'answer'],
}
# Create an agent with structured output
agent: Agent = (
AgentBuilder()
.with_name('Structured Math Solver')
.with_prompt('You are a math problem solver that provides structured solutions.')
.with_llm(OpenAI(model='gpt-4o'))
.with_output_schema(math_schema)
.build()
)
response: Any = await agent.run('Solve: 2x + 5 = 15')
print(f'Structured Response: {response}')
Define your agents using YAML for easy configuration and deployment:
metadata:
name: email-summary-flo
version: 1.0.0
description: "Agent for analyzing email threads"
agent:
name: EmailSummaryAgent
role: Email communication expert
model:
provider: openai
name: gpt-4o-mini
settings:
temperature: 0
max_retries: 3
reasoning_pattern: DIRECT
job: >
You are given an email thread between a customer and a support agent.
Your job is to analyze the behavior, sentiment, and communication style.
parser:
name: EmailSummary
fields:
- name: sender_type
type: literal
description: "Who sent the latest email"
values:
- value: customer
description: "Latest email was sent by customer"
- value: agent
description: "Latest email was sent by support agent"
- name: summary
type: str
description: "A comprehensive summary of the email"
- name: resolution_status
type: literal
description: "Issue resolution status"
values:
- value: resolved
description: "Issue appears resolved"
- value: unresolved
description: "Issue requires attention"
from typing import Any, List
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.models.agent import Agent
# Create agent from YAML
yaml_config: str = """...""" # Your YAML configuration string
email_thread: List[str] = ["Email thread content..."]
builder: AgentBuilder = AgentBuilder.from_yaml(yaml_str=yaml_config)
agent: Agent = builder.build()
# Use the agent
result: Any = await agent.run(email_thread)
Flo AI supports dynamic variable resolution in agent prompts and inputs using <variable_name>
syntax. Variables are automatically discovered, validated at runtime, and can be shared across multi-agent workflows.
<variable>
format avoids conflicts with JSON contentimport asyncio
from typing import Any, Dict
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
async def main() -> None:
# Create agent with variables in system prompt
agent: Agent = (
AgentBuilder()
.with_name('Data Analyst')
.with_prompt('Analyze <dataset_path> and focus on <key_metric>. Generate insights for <target_audience>.')
.with_llm(OpenAI(model='gpt-4o-mini'))
.build()
)
# Define variables at runtime
variables: Dict[str, str] = {
'dataset_path': '/data/sales_q4_2024.csv',
'key_metric': 'revenue growth',
'target_audience': 'executive team'
}
# Run agent with variable resolution
result: Any = await agent.run(
'Please provide a comprehensive analysis with actionable recommendations.',
variables=variables
)
print(f'Analysis: {result}')
asyncio.run(main())
Variables can also be used in the user input messages:
import asyncio
from typing import Any, Dict
from flo_ai.models.agent import Agent
from flo_ai.llm import OpenAI
async def input_variables_example() -> None:
agent: Agent = Agent(
name='content_creator',
system_prompt='You are a content creator specializing in <content_type>.',
llm=OpenAI(model='gpt-4o-mini')
)
variables: Dict[str, str] = {
'content_type': 'technical blog posts',
'topic': 'machine learning fundamentals',
'word_count': '1500',
'target_level': 'intermediate'
}
# Variables in both system prompt and user input
result: Any = await agent.run(
'Create a <word_count>-word article about <topic> for <target_level> readers.',
variables=variables
)
print(f'Content: {result}')
asyncio.run(input_variables_example())
Variables can be shared and passed between agents in workflows:
import asyncio
from typing import Any, Dict, List
from flo_ai.arium import AriumBuilder
from flo_ai.models.agent import Agent
from flo_ai.llm import OpenAI
async def multi_agent_variables() -> List[Any]:
llm: OpenAI = OpenAI(model='gpt-4o-mini')
# Agent 1: Research phase
researcher: Agent = Agent(
name='researcher',
system_prompt='Research <research_topic> and focus on <research_depth> analysis.',
llm=llm
)
# Agent 2: Writing phase
writer: Agent = Agent(
name='writer',
system_prompt='Write a <document_type> based on the research for <target_audience>.',
llm=llm
)
# Agent 3: Review phase
reviewer: Agent = Agent(
name='reviewer',
system_prompt='Review the <document_type> for <review_criteria> and provide feedback.',
llm=llm
)
# Shared variables across all agents
shared_variables: Dict[str, str] = {
'research_topic': 'sustainable energy solutions',
'research_depth': 'comprehensive',
'document_type': 'white paper',
'target_audience': 'policy makers',
'review_criteria': 'accuracy and policy relevance'
}
# Run multi-agent workflow with shared variables
result: List[Any] = await (
AriumBuilder()
.add_agents([researcher, writer, reviewer])
.start_with(researcher)
.connect(researcher, writer)
.connect(writer, reviewer)
.end_with(reviewer)
.build_and_run(
['Begin comprehensive research and document creation process'],
variables=shared_variables
)
)
return result
asyncio.run(multi_agent_variables())
Variables work seamlessly with YAML-based agent configuration:
metadata:
name: personalized-assistant
version: 1.0.0
description: "Personalized assistant with variable support"
agent:
name: PersonalizedAssistant
kind: llm
role: <user_role> assistant specialized in <domain_expertise>
model:
provider: openai
name: gpt-4o-mini
settings:
temperature: 0.3
max_retries: 2
reasoning_pattern: DIRECT
job: >
You are a <user_role> focused on <primary_objective>.
Your expertise includes <domain_expertise> and you should
tailor responses for <experience_level> users.
Always consider <priority_constraints> in your recommendations.
import asyncio
from typing import Any, Dict
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.models.agent import Agent
async def yaml_with_variables() -> None:
yaml_config: str = """...""" # Your YAML configuration
# Variables for YAML agent
variables: Dict[str, str] = {
'user_role': 'data scientist',
'domain_expertise': 'machine learning and statistical analysis',
'primary_objective': 'deriving actionable insights from data',
'experience_level': 'senior',
'priority_constraints': 'computational efficiency and model interpretability'
}
# Create agent from YAML with variables
builder: AgentBuilder = AgentBuilder.from_yaml(yaml_str=yaml_config)
agent: Agent = builder.build()
result: Any = await agent.run(
'Help me design an ML pipeline for <use_case> with <data_constraints>',
variables={
**variables,
'use_case': 'customer churn prediction',
'data_constraints': 'limited labeled data'
}
)
print(f'ML Pipeline Advice: {result}')
asyncio.run(yaml_with_variables())
The variables system provides comprehensive error reporting for missing or invalid variables:
import asyncio
from typing import Any, Dict
from flo_ai.models.agent import Agent
from flo_ai.llm import OpenAI
async def variable_validation_example() -> None:
agent: Agent = Agent(
name='validator_example',
system_prompt='Process <required_param> and <another_param> for analysis.',
llm=OpenAI(model='gpt-4o-mini')
)
# Incomplete variables (missing 'another_param')
incomplete_variables: Dict[str, str] = {
'required_param': 'dataset.csv'
# 'another_param' is missing
}
try:
result: Any = await agent.run(
'Analyze the data in <data_source>',
variables=incomplete_variables # Missing 'another_param' and 'data_source'
)
except ValueError as e:
print(f'Variable validation error: {e}')
# Error will list all missing variables with their locations
asyncio.run(variable_validation_example())
<target_audience>
instead of <ta>
The variables system makes Flo AI agents highly reusable and configurable, enabling you to create flexible AI workflows that adapt to different contexts and requirements.
Flo AI provides powerful document processing capabilities that allow agents to analyze and work with various document formats. The framework supports PDF and TXT documents with an extensible architecture for easy addition of new formats.
import asyncio
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.document import DocumentMessage, DocumentType
async def basic_document_analysis():
# Create document message from file path
document = DocumentMessage(
document_type=DocumentType.PDF,
document_file_path='path/to/your/document.pdf'
)
# Create document analysis agent
agent = (
AgentBuilder()
.with_name('Document Analyzer')
.with_prompt('Analyze the provided document and extract key insights, themes, and important information.')
.with_llm(OpenAI(model='gpt-4o-mini'))
.build()
)
# Process document with agent
result = await agent.run([document])
print(f'Analysis: {result}')
asyncio.run(basic_document_analysis())
Flo AI supports three ways to provide document content:
document = DocumentMessage(
document_type=DocumentType.PDF,
document_file_path='/path/to/document.pdf'
)
# Read file as bytes
with open('document.pdf', 'rb') as f:
pdf_bytes = f.read()
document = DocumentMessage(
document_type=DocumentType.PDF,
document_bytes=pdf_bytes,
mime_type='application/pdf'
)
import base64
# Encode file to base64
with open('document.pdf', 'rb') as f:
pdf_base64 = base64.b64encode(f.read()).decode('utf-8')
document = DocumentMessage(
document_type=DocumentType.PDF,
document_base64=pdf_base64,
mime_type='application/pdf'
)
Documents can be seamlessly integrated into Arium workflows:
import asyncio
from flo_ai.arium import AriumBuilder
from flo_ai.models.document import DocumentMessage, DocumentType
async def document_workflow():
# Create document message
document = DocumentMessage(
document_type=DocumentType.PDF,
document_file_path='business_report.pdf'
)
# Define workflow YAML
workflow_yaml = """
metadata:
name: document-analysis-workflow
version: 1.0.0
description: "Multi-agent document analysis pipeline"
arium:
agents:
- name: intake_agent
role: "Document Intake Specialist"
job: "Process and assess document content for analysis."
model:
provider: openai
name: gpt-4o-mini
- name: content_analyzer
role: "Content Analyst"
job: "Analyze document content for themes, insights, and key information."
model:
provider: openai
name: gpt-4o-mini
- name: summary_generator
role: "Summary Writer"
job: "Create comprehensive summaries of analyzed content."
model:
provider: openai
name: gpt-4o-mini
workflow:
start: intake_agent
edges:
- from: intake_agent
to: [content_analyzer]
- from: content_analyzer
to: [summary_generator]
end: [summary_generator]
"""
# Run workflow with document
result = await (
AriumBuilder()
.from_yaml(yaml_str=workflow_yaml)
.build_and_run([document, 'Analyze this business report and provide insights'])
)
return result
asyncio.run(document_workflow())
document = DocumentMessage(
document_type=DocumentType.PDF,
document_file_path='report.pdf',
metadata={
'source': 'quarterly_reports',
'department': 'finance',
'priority': 'high',
'tags': ['financial', 'q4-2024']
}
)
# PDF Document
pdf_doc = DocumentMessage(
document_type=DocumentType.PDF,
document_file_path='presentation.pdf'
)
# Text Document
txt_doc = DocumentMessage(
document_type=DocumentType.TXT,
document_file_path='notes.txt'
)
# Process both with the same agent
agent = AgentBuilder().with_name('Multi-Format Analyzer').build()
pdf_result = await agent.run([pdf_doc])
txt_result = await agent.run([txt_doc])
Create custom tools for document operations:
from flo_ai.tool import flo_tool
from flo_ai.models.document import DocumentMessage, DocumentType
@flo_tool(description="Extract key information from documents")
async def extract_document_info(document_path: str, doc_type: str) -> str:
"""Extract key information from a document."""
document_type = DocumentType.PDF if doc_type.lower() == 'pdf' else DocumentType.TXT
document = DocumentMessage(
document_type=document_type,
document_file_path=document_path
)
# Use document processing agent
agent = AgentBuilder().with_name('Info Extractor').build()
result = await agent.run([document])
return result
# Use in agent
agent = (
AgentBuilder()
.with_name('Document Processor')
.with_tools([extract_document_info.tool])
.build()
)
from flo_ai.utils.document_processor import DocumentProcessingError
try:
document = DocumentMessage(
document_type=DocumentType.PDF,
document_file_path='nonexistent.pdf'
)
result = await agent.run([document])
except DocumentProcessingError as e:
print(f'Document processing failed: {e}')
except FileNotFoundError:
print('Document file not found')
Type | Extension | Description | Processing Method |
---|---|---|---|
.pdf |
Portable Document Format | PyMuPDF4LLM (LLM-optimized) | |
TXT | .txt |
Plain text files | UTF-8 with encoding detection |
The document processing system makes Flo AI incredibly powerful for real-world applications that need to work with various document formats, enabling sophisticated AI workflows that can understand and process complex document content.
Create custom tools easily with async support:
from typing import List
from flo_ai.tool.base_tool import Tool
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
async def weather_lookup(city: str) -> str:
# Your weather API call here
return f"Weather in {city}: Sunny, 25Β°C"
weather_tool: Tool = Tool(
name='weather_lookup',
description='Get current weather for a city',
function=weather_lookup,
parameters={
'city': {
'type': 'string',
'description': 'City name to get weather for'
}
}
)
# Add to your agent
agent: Agent = (
AgentBuilder()
.with_name('Weather Assistant')
.with_llm(OpenAI(model='gpt-4o-mini'))
.with_tools([weather_tool])
.build()
)
The @flo_tool
decorator automatically converts any Python function into a Tool
object with minimal boilerplate:
from typing import Any, Dict, Union
from flo_ai.tool import flo_tool
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
@flo_tool(
description="Perform mathematical calculations",
parameter_descriptions={
"operation": "The operation to perform (add, subtract, multiply, divide)",
"x": "First number",
"y": "Second number"
}
)
async def calculate(operation: str, x: float, y: float) -> Union[float, str]:
"""Calculate mathematical operations between two numbers."""
operations: Dict[str, callable] = {
'add': lambda: x + y,
'subtract': lambda: x - y,
'multiply': lambda: x * y,
'divide': lambda: x / y if y != 0 else 'Cannot divide by zero',
}
if operation not in operations:
raise ValueError(f'Unknown operation: {operation}')
return operations[operation]()
# Function can be called normally
result: Union[float, str] = await calculate("add", 5, 3) # Returns 8
# Tool object is automatically available
agent: Agent = (
AgentBuilder()
.with_name('Calculator Agent')
.with_llm(OpenAI(model='gpt-4o-mini'))
.with_tools([calculate.tool]) # Access the tool via .tool attribute
.build()
)
Key Benefits:
Simple Usage:
from flo_ai.tool import flo_tool
@flo_tool()
async def convert_units(value: float, from_unit: str, to_unit: str) -> str:
"""Convert between different units (km/miles, kg/lbs, celsius/fahrenheit)."""
# Implementation here
result: float = 0.0 # Your conversion logic here
return f"{value} {from_unit} = {result} {to_unit}"
# Tool is automatically available as convert_units.tool
With Custom Metadata:
from typing import Optional
from flo_ai.tool import flo_tool
@flo_tool(
name="weather_checker",
description="Get current weather information for a city",
parameter_descriptions={
"city": "The city to get weather for",
"country": "The country (optional)",
}
)
async def get_weather(city: str, country: Optional[str] = None) -> str:
"""Get weather information for a specific city."""
return f"Weather in {city}: sunny"
π For detailed documentation on the
@flo_tool
decorator, see README_flo_tool.md
Flo AI supports multiple reasoning patterns:
from flo_ai.models.base_agent import ReasoningPattern
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
agent: Agent = (
AgentBuilder()
.with_name('Reasoning Agent')
.with_llm(OpenAI(model='gpt-4o'))
.with_reasoning(ReasoningPattern.COT) # or REACT, DIRECT
.build()
)
from flo_ai.llm import OpenAI
llm: OpenAI = OpenAI(
model='gpt-4o',
temperature=0.7,
api_key='your-api-key' # or set OPENAI_API_KEY env var
)
from flo_ai.llm import Anthropic
llm: Anthropic = Anthropic(
model='claude-3-5-sonnet-20240620',
temperature=0.7,
api_key='your-api-key' # or set ANTHROPIC_API_KEY env var
)
from flo_ai.llm import Gemini
llm: Gemini = Gemini(
model='gemini-2.5-flash', # or gemini-2.5-pro
temperature=0.7,
api_key='your-api-key' # or set GOOGLE_API_KEY env var
)
from flo_ai.llm import VertexAI
llm: VertexAI = VertexAI(
model='gemini-2.5-flash', # or gemini-2.5-pro
temperature=0.7,
project='your-gcp-project-id', # or set GOOGLE_CLOUD_PROJECT env var
location='us-central1' # or set GOOGLE_CLOUD_LOCATION env var
)
Prerequisites for VertexAI:
gcloud auth application-default login
GOOGLE_CLOUD_PROJECT
and GOOGLE_CLOUD_LOCATION
from flo_ai.llm import Ollama
llm: Ollama = Ollama(
model='llama2',
base_url='http://localhost:11434'
)
Use Pydantic models or JSON schemas for structured outputs:
from pydantic import BaseModel, Field
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
class MathSolution(BaseModel):
solution: str = Field(description="Step-by-step solution")
answer: str = Field(description="Final answer")
confidence: float = Field(description="Confidence level (0-1)")
agent: Agent = (
AgentBuilder()
.with_name('Math Solver')
.with_llm(OpenAI(model='gpt-4o'))
.with_output_schema(MathSolution)
.build()
)
Built-in retry mechanisms and error recovery:
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
agent: Agent = (
AgentBuilder()
.with_name('Robust Agent')
.with_llm(OpenAI(model='gpt-4o'))
.with_retries(3) # Retry up to 3 times on failure
.build()
)
Check out the examples/
directory for comprehensive examples:
agent_builder_usage.py
- Basic agent creation patternsyaml_agent_example.py
- YAML-based agent configurationoutput_formatter.py
- Structured output examplesmulti_tool_example.py
- Multi-tool agent examplescot_agent_example.py
- Chain of Thought reasoningusage.py
and usage_claude.py
- Provider-specific examplesvertexai_agent_example.py
- Google VertexAI integration examplesollama_agent_example.py
- Local Ollama model examplesdocument_processing_example.py
- Document processing with PDF and TXT filesfrom typing import Dict, Any
from flo_ai.tool.base_tool import Tool
async def custom_function(param1: str, param2: int) -> Dict[str, str]:
# Your async logic here
return {"result": f"Processed {param1} with {param2}"}
custom_tool: Tool = Tool(
name='custom_function',
description='A custom async tool',
function=custom_function,
parameters={
'param1': {'type': 'string', 'description': 'First parameter'},
'param2': {'type': 'integer', 'description': 'Second parameter'}
}
)
from typing import Dict, Any
from flo_ai.formatter.yaml_format_parser import FloYamlParser
from flo_ai.builder.agent_builder import AgentBuilder
from flo_ai.llm import OpenAI
from flo_ai.models.agent import Agent
# Create parser from YAML definition
yaml_config: Dict[str, Any] = {} # Your YAML configuration dict
parser: FloYamlParser = FloYamlParser.create(yaml_dict=yaml_config)
output_schema: Any = parser.get_format()
agent: Agent = (
AgentBuilder()
.with_name('YAML Configured Agent')
.with_llm(OpenAI(model='gpt-4o'))
.with_output_schema(output_schema)
.build()
)
Arium is Flo AIβs powerful workflow orchestration engine that allows you to create complex multi-agent workflows with ease. Think of it as a conductor for your AI agents, coordinating their interactions and data flow.
import asyncio
from typing import Any, List
from flo_ai.arium import AriumBuilder
from flo_ai.models.agent import Agent
from flo_ai.llm.openai_llm import OpenAI
async def simple_chain() -> List[Any]:
llm: OpenAI = OpenAI(model='gpt-4o-mini')
# Create agents
analyst: Agent = Agent(
name='content_analyst',
system_prompt='Analyze the input and extract key insights.',
llm=llm
)
summarizer: Agent = Agent(
name='summarizer',
system_prompt='Create a concise summary based on the analysis.',
llm=llm
)
# Build and run workflow
result: List[Any] = await (
AriumBuilder()
.add_agents([analyst, summarizer])
.start_with(analyst)
.connect(analyst, summarizer) # analyst β summarizer
.end_with(summarizer)
.build_and_run(["Analyze this complex business report..."])
)
return result
asyncio.run(simple_chain())
import asyncio
from typing import Any, List
from flo_ai.arium import AriumBuilder
from flo_ai.models.agent import Agent
from flo_ai.llm.openai_llm import OpenAI
from flo_ai.arium.memory import BaseMemory
async def conditional_workflow() -> List[Any]:
llm: OpenAI = OpenAI(model='gpt-4o-mini')
# Create specialized agents
classifier: Agent = Agent(
name='classifier',
system_prompt='Classify the input as either "technical" or "business".',
llm=llm
)
tech_specialist: Agent = Agent(
name='tech_specialist',
system_prompt='Provide technical analysis and solutions.',
llm=llm
)
business_specialist: Agent = Agent(
name='business_specialist',
system_prompt='Provide business analysis and recommendations.',
llm=llm
)
final_agent: Agent = Agent(
name='final_reviewer',
system_prompt='Provide final review and conclusions.',
llm=llm
)
# Define routing logic
def route_by_type(memory: BaseMemory) -> str:
"""Route based on classification result"""
messages: List[Any] = memory.get()
last_message: str = str(messages[-1]) if messages else ""
if "technical" in last_message.lower():
return "tech_specialist"
else:
return "business_specialist"
# Build workflow with conditional routing
result: List[Any] = await (
AriumBuilder()
.add_agents([classifier, tech_specialist, business_specialist, final_agent])
.start_with(classifier)
.add_edge(classifier, [tech_specialist, business_specialist], route_by_type)
.connect(tech_specialist, final_agent)
.connect(business_specialist, final_agent)
.end_with(final_agent)
.build_and_run(["How can we optimize our database performance?"])
)
return result
import asyncio
from typing import Any, List
from flo_ai.tool import flo_tool
from flo_ai.arium import AriumBuilder
from flo_ai.models.agent import Agent
from flo_ai.llm.openai_llm import OpenAI
@flo_tool(description="Search for relevant information")
async def search_tool(query: str) -> str:
# Your search implementation
return f"Search results for: {query}"
@flo_tool(description="Perform calculations")
async def calculator(expression: str) -> float:
# Your calculation implementation
return eval(expression) # Note: Use safely in production
async def agent_tool_workflow() -> List[Any]:
llm: OpenAI = OpenAI(model='gpt-4o-mini')
research_agent: Agent = Agent(
name='researcher',
system_prompt='Research topics and gather information.',
llm=llm
)
analyst_agent: Agent = Agent(
name='analyst',
system_prompt='Analyze data and provide insights.',
llm=llm
)
# Mix agents and tools in workflow
result: List[Any] = await (
AriumBuilder()
.add_agent(research_agent)
.add_tools([search_tool.tool, calculator.tool])
.add_agent(analyst_agent)
.start_with(research_agent)
.connect(research_agent, search_tool.tool)
.connect(search_tool.tool, calculator.tool)
.connect(calculator.tool, analyst_agent)
.end_with(analyst_agent)
.build_and_run(["Research market trends for Q4 2024"])
)
return result
from typing import Any, List, Callable, Optional
from flo_ai.arium import AriumBuilder
from flo_ai.arium.arium import Arium
from flo_ai.models.agent import Agent
from flo_ai.tool.base_tool import Tool
# Assume these are defined elsewhere
agent1: Agent = ... # Your agent definitions
agent2: Agent = ...
agent3: Agent = ...
tool1: Tool = ... # Your tool definitions
tool2: Tool = ...
router_function: Callable = ... # Your router function
# Build workflow and generate visual diagram
arium: Arium = (
AriumBuilder()
.add_agents([agent1, agent2, agent3])
.add_tools([tool1, tool2])
.start_with(agent1)
.connect(agent1, tool1)
.add_edge(tool1, [agent2, agent3], router_function)
.end_with(agent2)
.end_with(agent3)
.visualize("my_workflow.png", "Customer Service Workflow") # Generates PNG
.build()
)
# Run the workflow
result: List[Any] = await arium.run(["Customer complaint about billing"])
All agents in an Arium workflow share the same memory, enabling them to build on each otherβs work:
from typing import Any, List
from flo_ai.arium import AriumBuilder
from flo_ai.arium.memory import MessageMemory
from flo_ai.arium.arium import Arium
from flo_ai.models.agent import Agent
# Assume these agents are defined elsewhere
agent1: Agent = ...
agent2: Agent = ...
agent3: Agent = ...
# Custom memory for persistent context
custom_memory: MessageMemory = MessageMemory()
result: List[Any] = await (
AriumBuilder()
.with_memory(custom_memory) # Shared across all agents
.add_agents([agent1, agent2, agent3])
.start_with(agent1)
.connect(agent1, agent2)
.connect(agent2, agent3)
.end_with(agent3)
.build_and_run(["Initial context and instructions"])
)
# Build the arium for reuse
arium: Arium = (
AriumBuilder()
.with_memory(custom_memory)
.add_agents([agent1, agent2, agent3])
.start_with(agent1)
.connect(agent1, agent2)
.connect(agent2, agent3)
.end_with(agent3)
.build()
)
# Memory persists and can be reused
result2: List[Any] = await arium.run(["Follow-up question based on previous context"])
The AriumBuilder provides a fluent, intuitive API:
from typing import Any, List
from flo_ai.arium import AriumBuilder
from flo_ai.arium.arium import Arium
from flo_ai.models.agent import Agent
from flo_ai.tool.base_tool import Tool
# Assume these are defined elsewhere
agent1: Agent = ...
agent2: Agent = ...
tool1: Tool = ...
inputs: List[str] = ["Your input messages"]
# All builder methods return self for chaining
workflow: Arium = (
AriumBuilder()
.add_agent(agent1) # Add components
.add_tool(tool1)
.start_with(agent1) # Define flow
.connect(agent1, tool1)
.end_with(tool1)
.build() # Create Arium instance
)
# Or build and run in one step
result: List[Any] = await (
AriumBuilder()
.add_agents([agent1, agent2])
.start_with(agent1)
.connect(agent1, agent2)
.end_with(agent2)
.build_and_run(inputs) # Build + run together
)
Validation Built-in: The builder automatically validates your workflow:
One of Flo AIβs most powerful features is the ability to define entire multi-agent workflows using YAML configuration. This approach makes workflows reproducible, versionable, and easy to modify without changing code.
metadata:
name: "content-analysis-workflow"
version: "1.0.0"
description: "Multi-agent content analysis and summarization pipeline"
arium:
# Define agents inline
agents:
- name: "analyzer"
role: "Content Analyst"
job: "Analyze the input content and extract key insights, themes, and important information."
model:
provider: "openai"
name: "gpt-4o-mini"
settings:
temperature: 0.2
max_retries: 3
reasoning_pattern: "COT"
- name: "summarizer"
role: "Content Summarizer"
job: "Create a concise, actionable summary based on the analysis provided."
model:
provider: "anthropic"
name: "claude-3-5-sonnet-20240620"
settings:
temperature: 0.1
reasoning_pattern: "DIRECT"
# Define the workflow
workflow:
start: "analyzer"
edges:
- from: "analyzer"
to: ["summarizer"]
end: ["summarizer"]
import asyncio
from typing import Any, List
from flo_ai.arium import AriumBuilder
async def run_yaml_workflow() -> List[Any]:
yaml_config = """...""" # Your YAML configuration
# Create workflow from YAML
result: List[Any] = await (
AriumBuilder()
.from_yaml(yaml_config)
.build_and_run(["Analyze this quarterly business report..."])
)
return result
asyncio.run(run_yaml_workflow())
metadata:
name: "research-workflow"
version: "2.0.0"
description: "Intelligent research workflow with conditional routing"
arium:
# Define agents with tool references
agents:
- name: "classifier"
role: "Content Classifier"
job: "Classify input as 'research', 'calculation', or 'analysis' task."
model:
provider: "openai"
name: "gpt-4o-mini"
tools: ["web_search"] # Reference tools provided in Python
- name: "researcher"
role: "Research Specialist"
job: "Conduct thorough research on <research_topic> with <research_depth> analysis."
model:
provider: "anthropic"
name: "claude-3-5-sonnet-20240620"
tools: ["web_search"]
settings:
temperature: 0.3
reasoning_pattern: "REACT"
- name: "analyst"
role: "Data Analyst"
job: "Analyze numerical data and provide insights for <target_audience>."
model:
provider: "openai"
name: "gpt-4o"
tools: ["calculator", "web_search"]
settings:
reasoning_pattern: "COT"
- name: "synthesizer"
role: "Information Synthesizer"
job: "Combine research and analysis into final recommendations."
model:
provider: "gemini"
name: "gemini-2.5-flash"
# Complex workflow with conditional routing
workflow:
start: "classifier"
edges:
# Conditional routing based on classification
- from: "classifier"
to: ["researcher", "analyst"]
router: "classification_router" # Router function provided in Python
# Both specialists feed into synthesizer
- from: "researcher"
to: ["synthesizer"]
- from: "analyst"
to: ["synthesizer"]
end: ["synthesizer"]
import asyncio
from typing import Any, Dict, List, Literal
from flo_ai.arium import AriumBuilder
from flo_ai.tool.base_tool import Tool
from flo_ai.arium.memory import BaseMemory
# Define tools in Python (cannot be defined in YAML)
async def web_search(query: str) -> str:
# Your search implementation
return f"Search results for: {query}"
async def calculate(expression: str) -> str:
# Your calculation implementation
try:
result = eval(expression) # Note: Use safely in production
return f"Calculation result: {result}"
except:
return "Invalid expression"
# Create tool objects
tools: Dict[str, Tool] = {
"web_search": Tool(
name="web_search",
description="Search the web for current information",
function=web_search,
parameters={
"query": {
"type": "string",
"description": "Search query"
}
}
),
"calculator": Tool(
name="calculator",
description="Perform mathematical calculations",
function=calculate,
parameters={
"expression": {
"type": "string",
"description": "Mathematical expression to calculate"
}
}
)
}
# Define router functions in Python (cannot be defined in YAML)
def classification_router(memory: BaseMemory) -> Literal["researcher", "analyst"]:
"""Route based on task classification"""
content = str(memory.get()[-1]).lower()
if 'research' in content or 'investigate' in content:
return 'researcher'
elif 'calculate' in content or 'analyze data' in content:
return 'analyst'
return 'researcher' # default
routers: Dict[str, callable] = {
"classification_router": classification_router
}
async def run_workflow() -> List[Any]:
yaml_config = """...""" # Your YAML configuration from above
# Create workflow with tools and routers provided as Python objects
result: List[Any] = await (
AriumBuilder()
.from_yaml(
yaml_str=yaml_config,
tools=tools, # Tools must be provided as Python objects
routers=routers # Routers must be provided as Python functions
)
.build_and_run(["Research the latest trends in renewable energy"])
)
return result
One of the most powerful new features is the ability to define intelligent LLM routers directly in YAML. No more writing router functions - just describe your routing logic and let the LLM handle the decisions!
metadata:
name: "intelligent-content-workflow"
version: "1.0.0"
description: "Content creation with intelligent LLM-based routing"
arium:
agents:
- name: "content_creator"
role: "Content Creator"
job: "Create initial content based on the request"
model:
provider: "openai"
name: "gpt-4o-mini"
- name: "technical_writer"
role: "Technical Writer"
job: "Refine content for technical accuracy and clarity"
model:
provider: "openai"
name: "gpt-4o-mini"
- name: "creative_writer"
role: "Creative Writer"
job: "Enhance content with creativity and storytelling"
model:
provider: "openai"
name: "gpt-4o-mini"
- name: "marketing_writer"
role: "Marketing Writer"
job: "Optimize content for engagement and conversion"
model:
provider: "openai"
name: "gpt-4o-mini"
# β¨ LLM Router definitions - No code required!
routers:
- name: "content_type_router"
type: "smart" # Uses LLM to make intelligent routing decisions
routing_options:
technical_writer: "Technical content, documentation, tutorials, how-to guides"
creative_writer: "Creative writing, storytelling, fiction, brand narratives"
marketing_writer: "Marketing copy, sales content, landing pages, ad campaigns"
model:
provider: "openai"
name: "gpt-4o-mini"
settings:
temperature: 0.3
fallback_strategy: "first"
- name: "task_classifier"
type: "task_classifier" # Keyword-based classification
task_categories:
math_solver:
description: "Mathematical calculations and problem solving"
keywords: ["calculate", "solve", "equation", "math", "formula"]
examples: ["Calculate 2+2", "Solve x^2 + 5x + 6 = 0"]
code_helper:
description: "Programming and code assistance"
keywords: ["code", "program", "debug", "function", "algorithm"]
examples: ["Write a Python function", "Debug this code"]
model:
provider: "openai"
name: "gpt-4o-mini"
workflow:
start: "content_creator"
edges:
- from: "content_creator"
to: ["technical_writer", "creative_writer", "marketing_writer"]
router: "content_type_router" # LLM automatically routes based on content type!
end: ["technical_writer", "creative_writer", "marketing_writer"]
π― LLM Router Types:
type: smart
): General-purpose routing based on content analysistype: task_classifier
): Routes based on keywords and examplestype: conversation_analysis
): Context-aware routingtype: reflection
): Structured AβBβAβC patterns for reflection workflowstype: plan_execute
): Cursor-style plan-and-execute workflows with step tracking⨠Key Benefits:
# Using LLM routers is incredibly simple!
async def run_intelligent_workflow():
# No routers dictionary needed - they're defined in YAML!
result = await (
AriumBuilder()
.from_yaml(yaml_str=intelligent_workflow_yaml)
.build_and_run(["Write a technical tutorial on Docker containers"])
)
# The LLM will automatically route to technical_writer! β¨
return result
The ReflectionRouter is designed specifically for reflection-based workflows that follow AβBβAβC patterns, commonly used for mainβcriticβmainβfinal agent sequences. This pattern is perfect for iterative improvement workflows where a critic agent provides feedback before final processing.
π Key Features:
π― Supported Patterns:
# Simple A β B β A reflection pattern
metadata:
name: "content-reflection-workflow"
version: "1.0.0"
description: "Content creation with critic feedback loop"
arium:
agents:
- name: "writer"
role: "Content Writer"
job: "Create and improve content based on feedback from critics."
model:
provider: "openai"
name: "gpt-4o-mini"
settings:
temperature: 0.7
- name: "critic"
role: "Content Critic"
job: "Review content and provide constructive feedback for improvement."
model:
provider: "openai"
name: "gpt-4o-mini"
settings:
temperature: 0.3
# β¨ ReflectionRouter definition
routers:
- name: "reflection_router"
type: "reflection" # Specialized for reflection patterns
flow_pattern: [writer, critic, writer] # A β B β A pattern
model:
provider: "openai"
name: "gpt-4o-mini"
settings:
temperature: 0.2
allow_early_exit: false # Strict adherence to pattern
workflow:
start: "writer"
edges:
- from: "writer"
to: [critic, writer] # Can go to critic or self-reference
router: "reflection_router"
- from: "critic"
to: [writer] # Always returns to writer
router: "reflection_router"
end: [writer] # Writer produces final output
# Advanced A β B β A β C reflection pattern
metadata:
name: "advanced-reflection-workflow"
version: "1.0.0"
description: "Full reflection cycle with dedicated final agent"
arium:
agents:
- name: "researcher"
role: "Research Agent"
job: "Conduct research and gather information on topics."
model:
provider: "openai"
name: "gpt-4o-mini"
- name: "reviewer"
role: "Research Reviewer"
job: "Review research quality and suggest improvements."
model:
provider: "anthropic"
name: "claude-3-5-sonnet-20240620"
- name: "synthesizer"
role: "Information Synthesizer"
job: "Create final synthesis and conclusions from research."
model:
provider: "openai"
name: "gpt-4o"
routers:
- name: "research_reflection_router"
type: "reflection"
flow_pattern: [researcher, reviewer, researcher, synthesizer] # A β B β A β C
settings:
allow_early_exit: true # Allow smart early completion
workflow:
start: "researcher"
edges:
- from: "researcher"
to: [reviewer, researcher, synthesizer] # All possible destinations
router: "research_reflection_router"
- from: "reviewer"
to: [researcher, reviewer, synthesizer]
router: "research_reflection_router"
- from: "synthesizer"
to: [end]
end: [synthesizer]
π§ ReflectionRouter Configuration Options:
routers:
- name: "my_reflection_router"
type: "reflection"
flow_pattern: [main_agent, critic, main_agent, final_agent] # Define your pattern
model: # Optional: LLM for routing decisions
provider: "openai"
name: "gpt-4o-mini"
settings: # Optional settings
temperature: 0.2 # Router temperature (lower = more deterministic)
allow_early_exit: false # Allow early completion if LLM determines pattern is done
fallback_strategy: "first" # first, last, random - fallback when LLM fails
ποΈ Programmatic Usage:
import asyncio
from flo_ai.arium import AriumBuilder
from flo_ai.models.agent import Agent
from flo_ai.llm import OpenAI
from flo_ai.arium.llm_router import create_main_critic_reflection_router
async def reflection_workflow_example():
llm = OpenAI(model='gpt-4o-mini', api_key='your-api-key')
# Create agents
main_agent = Agent(
name='main_agent',
system_prompt='Create solutions and improve them based on feedback.',
llm=llm
)
critic = Agent(
name='critic',
system_prompt='Provide constructive feedback for improvement.',
llm=llm
)
final_agent = Agent(
name='final_agent',
system_prompt='Polish and finalize the work.',
llm=llm
)
# Create reflection router - A β B β A β C pattern
reflection_router = create_main_critic_reflection_router(
main_agent='main_agent',
critic_agent='critic',
final_agent='final_agent',
allow_early_exit=False, # Strict pattern adherence
llm=llm
)
# Build workflow
result = await (
AriumBuilder()
.add_agents([main_agent, critic, final_agent])
.start_with(main_agent)
.add_edge(main_agent, [critic, final_agent], reflection_router)
.add_edge(critic, [main_agent, final_agent], reflection_router)
.end_with(final_agent)
.build_and_run(["Create a comprehensive project proposal"])
)
return result
# Alternative: Direct factory usage
from flo_ai.arium.llm_router import create_llm_router
reflection_router = create_llm_router(
'reflection',
flow_pattern=['writer', 'editor', 'writer'], # A β B β A
allow_early_exit=False,
llm=llm
)
π‘ ReflectionRouter Intelligence:
The ReflectionRouter automatically:
β writer β β critic β β writer
π― Perfect Use Cases:
β‘ Quick Start Example:
# Minimal A β B β A pattern
yaml_config = """
arium:
agents:
- name: main_agent
job: "Main work agent"
model: {provider: openai, name: gpt-4o-mini}
- name: critic
job: "Feedback agent"
model: {provider: openai, name: gpt-4o-mini}
routers:
- name: reflection_router
type: reflection
flow_pattern: [main_agent, critic, main_agent]
workflow:
start: main_agent
edges:
- from: main_agent
to: [critic, main_agent]
router: reflection_router
- from: critic
to: [main_agent]
router: reflection_router
end: [main_agent]
"""
result = await AriumBuilder().from_yaml(yaml_str=yaml_config).build_and_run(["Your task"])
The ReflectionRouter makes implementing sophisticated feedback loops and iterative improvement workflows incredibly simple, whether you need a 2-agent or 3-agent pattern! π
The PlanExecuteRouter implements sophisticated plan-and-execute patterns similar to how Cursor works. It automatically breaks down complex tasks into detailed execution plans and coordinates step-by-step execution with intelligent progress tracking.
π Key Features:
π― Perfect for Cursor-Style Workflows:
π YAML Configuration:
# Complete Plan-Execute Workflow
metadata:
name: "development-plan-execute"
version: "1.0.0"
description: "Cursor-style development workflow"
arium:
agents:
- name: planner
role: Project Planner
job: >
Break down complex development tasks into detailed, sequential execution plans.
Create clear steps with dependencies and agent assignments.
model:
provider: openai
name: gpt-4o-mini
settings:
temperature: 0.3
- name: developer
role: Software Developer
job: >
Implement features step by step according to execution plans.
Provide detailed implementation and update step status.
model:
provider: openai
name: gpt-4o-mini
settings:
temperature: 0.5
- name: tester
role: QA Engineer
job: >
Test implementations thoroughly and validate functionality.
Create comprehensive test scenarios and report results.
model:
provider: openai
name: gpt-4o-mini
settings:
temperature: 0.2
- name: reviewer
role: Senior Reviewer
job: >
Provide final quality assessment and approval.
Review completed work for best practices and requirements.
model:
provider: openai
name: gpt-4o-mini
# PlanExecuteRouter configuration
routers:
- name: dev_plan_router
type: plan_execute # Router type for plan-execute workflows
agents: # Available agents and their capabilities
planner: "Creates detailed execution plans by breaking down tasks"
developer: "Implements features and code according to plan specifications"
tester: "Tests implementations and validates functionality"
reviewer: "Reviews and approves completed work"
model: # Optional: LLM for routing decisions
provider: openai
name: gpt-4o-mini
settings: # Optional configuration
temperature: 0.2 # Router decision temperature
planner_agent: planner # Agent responsible for creating plans
executor_agent: developer # Default agent for executing steps
reviewer_agent: reviewer # Optional agent for final review
max_retries: 3 # Maximum retries for failed steps
workflow:
start: planner
edges:
# All agents can route to all others based on plan state
- from: planner
to: [developer, tester, reviewer, planner]
router: dev_plan_router
- from: developer
to: [developer, tester, reviewer, planner]
router: dev_plan_router
- from: tester
to: [developer, tester, reviewer, planner]
router: dev_plan_router
- from: reviewer
to: [end]
end: [reviewer]
ποΈ Programmatic Usage:
import asyncio
from flo_ai.arium import AriumBuilder
from flo_ai.arium.memory import PlanAwareMemory
from flo_ai.models.agent import Agent
from flo_ai.llm import OpenAI
from flo_ai.arium.llm_router import create_plan_execute_router
async def cursor_style_workflow():
llm = OpenAI(model='gpt-4o-mini', api_key='your-api-key')
# Create specialized agents
planner = Agent(
name='planner',
system_prompt='Create detailed execution plans by breaking down tasks into sequential steps.',
llm=llm
)
developer = Agent(
name='developer',
system_prompt='Implement features step by step according to execution plans.',
llm=llm
)
tester = Agent(
name='tester',
system_prompt='Test implementations and validate functionality thoroughly.',
llm=llm
)
reviewer = Agent(
name='reviewer',
system_prompt='Review completed work and provide final approval.',
llm=llm
)
# Create plan-execute router
plan_router = create_plan_execute_router(
planner_agent='planner',
executor_agent='developer',
reviewer_agent='reviewer',
additional_agents={'tester': 'Tests implementations and validates quality'},
llm=llm
)
# Use PlanAwareMemory for plan state persistence
memory = PlanAwareMemory()
# Build and run workflow
result = await (
AriumBuilder()
.with_memory(memory)
.add_agents([planner, developer, tester, reviewer])
.start_with(planner)
.add_edge(planner, [developer, tester, reviewer, planner], plan_router)
.add_edge(developer, [developer, tester, reviewer, planner], plan_router)
.add_edge(tester, [developer, tester, reviewer, planner], plan_router)
.add_edge(reviewer, [developer, tester, reviewer, planner], plan_router)
.end_with(reviewer)
.build_and_run(["Create a REST API for user authentication with JWT tokens"])
)
return result
# Alternative: Factory function
from flo_ai.arium.llm_router import create_plan_execute_router
plan_router = create_plan_execute_router(
planner_agent='planner',
executor_agent='developer',
reviewer_agent='reviewer',
llm=llm
)
π‘ How PlanExecuteRouter Works:
The router intelligently coordinates workflow phases:
π Plan Progress Visualization:
π EXECUTION PLAN: User Authentication API
π CURRENT PROGRESS:
β
design_schema: Design user database schema β developer
β
implement_registration: Create registration endpoint β developer
β³ implement_login: Add login with JWT β developer (depends: design_schema, implement_registration)
β add_middleware: Authentication middleware β developer (depends: implement_login)
β write_tests: Comprehensive testing β tester (depends: add_middleware)
β final_review: Security and code review β reviewer (depends: write_tests)
π― NEXT ACTION: Execute step 'implement_login'
π― SUGGESTED AGENT: developer
π§ Advanced Configuration Options:
routers:
- name: advanced_plan_router
type: plan_execute
agents:
planner: "Creates execution plans"
frontend_dev: "Frontend implementation"
backend_dev: "Backend implementation"
devops: "Deployment and infrastructure"
qa_tester: "Quality assurance testing"
security_reviewer: "Security review"
product_owner: "Product validation"
model:
provider: openai
name: gpt-4o
settings:
temperature: 0.1 # Lower for more deterministic routing
planner_agent: planner # Plan creation agent
executor_agent: backend_dev # Default execution agent
reviewer_agent: product_owner # Final review agent
max_retries: 5 # Retry attempts for failed steps
allow_parallel_execution: true # Enable parallel step execution
plan_validation: strict # Validate plan completeness
β‘ Quick Start Example:
# Minimal plan-execute workflow
yaml_config = """
arium:
agents:
- name: planner
job: "Create execution plans"
model: {provider: openai, name: gpt-4o-mini}
- name: executor
job: "Execute plan steps"
model: {provider: openai, name: gpt-4o-mini}
- name: reviewer
job: "Review final results"
model: {provider: openai, name: gpt-4o-mini}
routers:
- name: simple_plan_router
type: plan_execute
agents:
planner: "Creates plans"
executor: "Executes steps"
reviewer: "Reviews results"
settings:
planner_agent: planner
executor_agent: executor
reviewer_agent: reviewer
workflow:
start: planner
edges:
- from: planner
to: [executor, reviewer, planner]
router: simple_plan_router
- from: executor
to: [executor, reviewer, planner]
router: simple_plan_router
- from: reviewer
to: [end]
end: [reviewer]
"""
result = await AriumBuilder().from_yaml(yaml_str=yaml_config).build_and_run(["Your complex task"])
π― Use Cases and Examples:
The PlanExecuteRouter brings Cursor-style intelligent task automation to Flo AI, making it incredibly easy to build sophisticated multi-step workflows that adapt and execute complex tasks automatically! π
metadata:
name: "personalized-workflow"
version: "1.0.0"
description: "Workflow that adapts based on input variables"
arium:
agents:
- name: "specialist"
role: "<expert_role>"
job: "You are a <expert_role> specializing in <domain>. Provide <output_type> for <target_audience>."
model:
provider: "<preferred_llm_provider>"
name: "<model_name>"
settings:
temperature: 0.3
reasoning_pattern: "<reasoning_style>"
- name: "reviewer"
role: "Quality Reviewer"
job: "Review the <output_type> for <quality_criteria> and provide feedback."
model:
provider: "openai"
name: "gpt-4o"
workflow:
start: "specialist"
edges:
- from: "specialist"
to: ["reviewer"]
end: ["reviewer"]
import asyncio
from typing import Any, Dict, List
from flo_ai.arium import AriumBuilder
async def run_personalized_workflow() -> List[Any]:
yaml_config = """...""" # Your YAML configuration with variables
# Define variables for the workflow
variables: Dict[str, str] = {
'expert_role': 'Data Scientist',
'domain': 'machine learning and predictive analytics',
'output_type': 'technical analysis report',
'target_audience': 'engineering team',
'preferred_llm_provider': 'anthropic',
'model_name': 'claude-3-5-sonnet-20240620',
'reasoning_style': 'COT',
'quality_criteria': 'technical accuracy and clarity'
}
result: List[Any] = await (
AriumBuilder()
.from_yaml(yaml_config)
.build_and_run(
["Analyze our customer churn prediction model performance"],
variables=variables
)
)
return result
metadata:
name: "hybrid-workflow"
version: "1.0.0"
description: "Mix of inline agents and pre-built agent references"
# Import existing agent configurations
imports:
- "agents/content_analyzer.yaml"
- "agents/technical_reviewer.yaml"
arium:
# Mix of imported and inline agents
agents:
# Reference imported agent
- import: "content_analyzer"
name: "analyzer" # Override name if needed
# Define new agent inline
- name: "formatter"
role: "Content Formatter"
job: "Format the analysis into a professional report structure."
model:
provider: "openai"
name: "gpt-4o-mini"
# Reference another imported agent
- import: "technical_reviewer"
name: "reviewer"
workflow:
start: "analyzer"
edges:
- from: "analyzer"
to: ["formatter"]
- from: "formatter"
to: ["reviewer"]
end: ["reviewer"]
β YAML Configuration Supports:
β YAML Configuration Does NOT Support:
π‘ Best Practice: Use YAML for workflow structure and agent configuration, Python for executable logic (tools and routers).
π For detailed Arium documentation and advanced patterns, see flo_ai/flo_ai/arium/README.md
Visit our comprehensive documentation for:
Additional Resources:
@flo_tool
decoratorWe love your input! Check out our Contributing Guide to get started. Ways to contribute:
Flo AI is MIT Licensed.
Built with β€οΈ using: